<!-- Steps to run a Python project -->
1. <!-- Make sure Python is installed. Check with: -->
<code>python --version</code>
2. <!-- Create a Python file, e.g., app.py -->
<code>
# app.py
print("Hello, Python Project!")
</code>
3. <!-- Open your terminal or command prompt -->
<!-- Navigate to the folder where your script is saved -->
4. <!-- Run the script using the command: -->
<code>python app.py</code>
<!-- Output: -->
Hello, Python Project!
# Variables store data in memory for later use.
# Python is dynamically typed, so no type declaration needed.
name = "Alice" # String variable
age = 25 # Integer variable
is_student = True # Boolean variable
print(name) # Output: Alice
print(age) # Output: 25
print(is_student) # Output: True
# A function is a reusable block of code that performs a task.
# Use the 'def' keyword to define a function.
def greet(name): # Define function with one parameter
print("Hello, " + name + "!") # Function body
greet("Bob") # Output: Hello, Bob!
# A list is an ordered collection of items.
# Lists are mutable and can contain mixed data types.
fruits = ["apple", "banana", "cherry"] # Define a list
print(fruits[0]) # Output: apple
fruits.append("orange") # Add item to list
print(fruits) # Output: ['apple', 'banana', 'cherry', 'orange']
# A for loop is used to iterate over sequences (like lists, strings, etc.)
numbers = [1, 2, 3]
for num in numbers: # Loop over list
print(num) # Output: 1 2 3 (one per line)
# A dictionary holds key-value pairs.
# It is unordered, mutable, and indexed by keys.
student = {
"name": "John",
"age": 20,
"grade": "A"
}
print(student["name"]) # Output: John
student["age"] = 21 # Update value
print(student["age"]) # Output: 21
# Use try-except blocks to catch and handle exceptions.
try:
result = 10 / 0 # Division by zero error
except ZeroDivisionError:
print("Cannot divide by zero!") # Output: Cannot divide by zero!
# Use the input() function to get input from the user.
name = input("Enter your name: ") # Prompt user
print("Hello, " + name + "!") # Output: Hello, <user_input>!
# Use open() function with write ('w') mode to write to files.
with open("sample.txt", "w") as file: # Open file in write mode
file.write("This is a test.") # Write to file
# The 'with' block automatically closes the file
# Classes define blueprints for objects.
# Objects are instances of classes.
class Person:
def __init__(self, name): # Constructor method
self.name = name # Instance variable
def greet(self): # Method
print("Hi, I am " + self.name)
p = Person("Alice") # Create object
p.greet() # Output: Hi, I am Alice
# List comprehensions provide a concise way to create lists.
numbers = [1, 2, 3, 4, 5]
squares = [x**2 for x in numbers] # Square each number
print(squares) # Output: [1, 4, 9, 16, 25]
# A lambda function is a small anonymous function.
# It can have any number of arguments but only one expression.
square = lambda x: x * x # Define lambda function
print(square(5)) # Output: 25
# == compares values. 'is' compares identities (memory addresses).
a = [1, 2, 3]
b = [1, 2, 3]
c = a
print(a == b) # True: values are equal
print(a is b) # False: different objects
print(a is c) # True: same object
# Slicing extracts a portion of a list, string, or tuple.
my_list = [0, 1, 2, 3, 4, 5]
print(my_list[1:4]) # Output: [1, 2, 3]
print(my_list[:3]) # Output: [0, 1, 2]
print(my_list[::2]) # Output: [0, 2, 4]
# Lists are mutable; tuples are immutable.
my_list = [1, 2, 3] # Can change values
my_tuple = (1, 2, 3) # Cannot change values
my_list[0] = 10 # Works
# my_tuple[0] = 10 # Error
# *args allows variable number of positional arguments
# **kwargs allows variable number of keyword arguments
def show_args(*args, **kwargs):
print(args) # Tuple of positional arguments
print(kwargs) # Dictionary of keyword arguments
show_args(1, 2, 3, a=10, b=20)
# Output: (1, 2, 3)
# {'a': 10, 'b': 20}
# You can reverse a list in multiple ways
my_list = [1, 2, 3, 4]
reversed1 = my_list[::-1] # Slicing
my_list.reverse() # In-place reverse
reversed2 = list(reversed(my_list)) # Using reversed()
print(reversed1) # Output: [4, 3, 2, 1]
# Use 'import' to include modules
import math # Import entire module
print(math.sqrt(16)) # Output: 4.0
from math import pi # Import specific object
print(pi) # Output: 3.14159...
# Sets are unordered collections of unique items
my_set = {1, 2, 2, 3, 4}
print(my_set) # Output: {1, 2, 3, 4}
my_set.add(5) # Add item
my_set.remove(1) # Remove item
# Generators yield values one at a time using 'yield'
def count_up_to(max):
count = 1
while count <= max:
yield count
count += 1
for num in count_up_to(3):
print(num) # Output: 1 2 3
# Decorators modify the behavior of functions.
def decorator_func(func):
def wrapper():
print("Before function call")
func()
print("After function call")
return wrapper
@decorator_func
def say_hello():
print("Hello!")
say_hello()
# Output:
# Before function call
# Hello!
# After function call
# Use try-except blocks to handle exceptions gracefully
try:
x = 10 / 0 # Will raise ZeroDivisionError
except ZeroDivisionError:
print("Cannot divide by zero!") # Handle error
finally:
print("Execution finished.") # Always runs
# 'with' ensures proper resource management (e.g., closing files)
with open("example.txt", "w") as file:
file.write("Hello, world!") # File is automatically closed
# Use type() function
x = 5
print(type(x)) # Output: <class 'int'>
y = "hello"
print(type(y)) # Output: <class 'str'>
# A dictionary is a collection of key-value pairs
person = {
"name": "Alice",
"age": 25,
"city": "New York"
}
print(person["name"]) # Output: Alice
# List comprehension provides a concise way to create lists
squares = [x*x for x in range(5)]
print(squares) # Output: [0, 1, 4, 9, 16]
# append() adds a single element
# extend() adds elements from another iterable
a = [1, 2]
a.append([3, 4])
print(a) # Output: [1, 2, [3, 4]]
b = [1, 2]
b.extend([3, 4])
print(b) # Output: [1, 2, 3, 4]
# Use '#' for single-line comments
# Use triple quotes ''' or """ for multiline docstrings
# This is a single-line comment
"""
This is a
multiline comment
or docstring
"""
# 'pass' is a placeholder for future code
def function_to_implement_later():
pass # No operation, just a placeholder
class EmptyClass:
pass
x = 5 # Global variable
def my_func():
x = 10 # Local variable
print(x) # Output: 10
my_func()
print(x) # Output: 5
# Use built-in functions: int(), float(), str(), list(), etc.
x = "123"
print(int(x)) # Output: 123
y = 3.14
print(str(y)) # Output: "3.14"
z = [1, 2, 3]
print(tuple(z)) # Output: (1, 2, 3)
# 'is' checks for identity (whether two variables refer to the same object)
a = [1, 2]
b = a
c = [1, 2]
print(a is b) # True (same object)
print(a is c) # False (same value, different object)
# Slicing is used to get a part of a list, string, or tuple
numbers = [0, 1, 2, 3, 4, 5]
print(numbers[1:4]) # Output: [1, 2, 3]
print(numbers[:3]) # Output: [0, 1, 2]
print(numbers[::2]) # Output: [0, 2, 4]
# *args allows variable number of positional arguments
# **kwargs allows variable number of keyword arguments
def show_info(*args, **kwargs):
print(args)
print(kwargs)
show_info(1, 2, 3, name="Alice", age=30)
# Output: (1, 2, 3)
# Output: {'name': 'Alice', 'age': 30}
# Open a file to write
with open("sample.txt", "w") as f:
f.write("Hello Python!")
# Open a file to read
with open("sample.txt", "r") as f:
content = f.read()
print(content) # Output: Hello Python!
# Lambda functions are anonymous functions defined using the lambda keyword
add = lambda x, y: x + y
print(add(2, 3)) # Output: 5
from functools import reduce
nums = [1, 2, 3, 4, 5]
# map - apply function to all elements
squares = list(map(lambda x: x*x, nums))
print(squares) # Output: [1, 4, 9, 16, 25]
# filter - filter based on condition
even = list(filter(lambda x: x%2 == 0, nums))
print(even) # Output: [2, 4]
# reduce - apply function cumulatively
sum_all = reduce(lambda x, y: x + y, nums)
print(sum_all) # Output: 15
# 'in' checks membership in iterables
fruits = ["apple", "banana", "cherry"]
print("apple" in fruits) # Output: True
print("grape" not in fruits) # Output: True
dict1 = {'a': 1, 'b': 2}
dict2 = {'b': 3, 'c': 4}
# Python 3.9+
merged = dict1 | dict2
print(merged) # Output: {'a': 1, 'b': 3, 'c': 4}
# For older versions
merged = {**dict1, **dict2}
print(merged) # Output: {'a': 1, 'b': 3, 'c': 4}
# Module: a file with Python code (.py)
# Package: a directory with __init__.py and modules
# example.py
def greet():
print("Hello from module!")
# main.py
import example
example.greet() # Output: Hello from module!
# Virtual environment isolates dependencies for each project
# Create virtual environment
python -m venv env
# Activate on Windows
env\Scripts\activate
# Activate on Unix/macOS
source env/bin/activate
# Install packages locally
pip install requests
import datetime
# Current date and time
now = datetime.datetime.now()
print("Now:", now)
# Create a specific date
d = datetime.date(2025, 5, 19)
print("Date:", d)
# Format date
print("Formatted:", now.strftime("%Y-%m-%d"))
# Generators use yield to produce items one by one
def countdown(n):
while n > 0:
yield n
n -= 1
for i in countdown(3):
print(i) # Output: 3 2 1
import sys
# Prints the list of command-line arguments
print("Arguments:", sys.argv)
# Example:
# python script.py hello world
# Output: ['script.py', 'hello', 'world']
# Defining a class
class Dog:
def __init__(self, name):
self.name = name
def bark(self):
print(self.name + " says woof!")
# Creating object
d = Dog("Buddy")
d.bark() # Output: Buddy says woof!
# Inheritance allows a class to use methods and properties of another
class Animal:
def speak(self):
print("Animal speaks")
class Dog(Animal):
def bark(self):
print("Dog barks")
d = Dog()
d.speak() # Output: Animal speaks
d.bark() # Output: Dog barks
# Decorator adds functionality to an existing function
def my_decorator(func):
def wrapper():
print("Before function")
func()
print("After function")
return wrapper
@my_decorator
def greet():
print("Hello!")
greet()
# Output:
# Before function
# Hello!
# After function
# List comprehension example
squares = [x*x for x in range(5)]
print(squares) # Output: [0, 1, 4, 9, 16]
# Dictionary comprehension
d = {x: x*x for x in range(3)}
print(d) # Output: {0: 0, 1: 1, 2: 4}
numbers = [4, 2, 9, 1]
# Sort ascending
numbers.sort()
print(numbers) # Output: [1, 2, 4, 9]
# Sort descending
numbers.sort(reverse=True)
print(numbers) # Output: [9, 4, 2, 1]
names = ["Alice", "Bob"]
scores = [85, 90]
# Combine elements from both lists
combined = list(zip(names, scores))
print(combined) # Output: [('Alice', 85), ('Bob', 90)]
# Reverse a string
s = "hello"
print(s[::-1]) # Output: "olleh"
# Reverse a list
nums = [1, 2, 3]
nums.reverse()
print(nums) # Output: [3, 2, 1]
# Context managers manage resources like files
with open("file.txt", "w") as f:
f.write("Hello, world!") # File auto-closes after this block
# Lambda creates anonymous functions
add = lambda a, b: a + b
print(add(2, 3)) # Output: 5
import sys
x = [1, 2, 3, 4]
print(sys.getsizeof(x)) # Output: memory size in bytes
# Create virtual environment
python -m venv myenv
# Activate (Windows)
myenv\Scripts\activate
# Activate (Mac/Linux)
source myenv/bin/activate
# *args: variable number of positional arguments
# **kwargs: variable number of keyword arguments
def demo(*args, **kwargs):
print("args:", args)
print("kwargs:", kwargs)
demo(1, 2, a=3, b=4)
# Output: args: (1, 2), kwargs: {'a': 3, 'b': 4}
a = {'x': 1}
b = {'y': 2}
# Merge using unpacking
merged = {**a, **b}
print(merged) # Output: {'x': 1, 'y': 2}
# Magic methods start and end with __
class Book:
def __init__(self, title):
self.title = title
def __str__(self):
return f"Book: {self.title}"
b = Book("Python")
print(b) # Output: Book: Python
my_dict = {"a": 1}
# Use get() with default value
print(my_dict.get("b", "Not found")) # Output: Not found
# == checks value equality
# is checks identity (same memory location)
a = [1, 2]
b = [1, 2]
print(a == b) # True
print(a is b) # False
# map() applies a function to every item in a list
nums = [1, 2, 3]
squared = list(map(lambda x: x*x, nums))
print(squared) # Output: [1, 4, 9]
# Example using scikit-learn model
from sklearn.linear_model import LinearRegression
model = LinearRegression()
X = [[0], [1], [2]]
y = [0, 1, 2]
model.fit(X, y) # Train the model
print(model.predict([[3]])) # Predicts: [3.]
import openai
openai.api_key = "your-api-key"
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[{"role": "user", "content": "Hello!"}]
)
print(response.choices[0].message['content'])
from transformers import pipeline
generator = pipeline("text-generation", model="gpt2")
print(generator("AI will change the world because", max_length=30))
from flask import Flask, request, jsonify
from transformers import pipeline
app = Flask(__name__)
classifier = pipeline("sentiment-analysis")
@app.route('/analyze', methods=['POST'])
def analyze():
text = request.json['text']
result = classifier(text)
return jsonify(result)
# Run with: flask run
import tensorflow as tf
from tensorflow.keras import layers
model = tf.keras.Sequential([
layers.Flatten(input_shape=(28, 28)),
layers.Dense(128, activation='relu'),
layers.Dense(10)
])
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
# model.fit(x_train, y_train, epochs=5)
from fastapi import FastAPI
from pydantic import BaseModel
from transformers import pipeline
app = FastAPI()
summarizer = pipeline("summarization")
class RequestBody(BaseModel):
text: str
@app.post("/summarize")
def summarize(req: RequestBody):
result = summarizer(req.text, max_length=50)
return result
import speech_recognition as sr
r = sr.Recognizer()
with sr.Microphone() as source:
print("Say something:")
audio = r.listen(source)
try:
print("You said:", r.recognize_google(audio))
except:
print("Sorry, could not recognize.")
import cv2
# Load image and convert to grayscale
img = cv2.imread("image.jpg")
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Display image
cv2.imshow("Gray Image", gray)
cv2.waitKey(0)
cv2.destroyAllWindows()
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
pipe.to("cuda") # Use GPU if available
image = pipe("A fantasy landscape with dragons").images[0]
image.save("generated.png")
import cv2
import torch
from ultralytics import YOLO
model = YOLO("yolov8n.pt") # Pre-trained model
cap = cv2.VideoCapture(0)
while True:
ret, frame = cap.read()
results = model(frame) # Inference
annotated_frame = results[0].plot()
cv2.imshow("YOLO Detection", annotated_frame)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
cap.release()
cv2.destroyAllWindows()
# In views.py of a Django app
from django.http import JsonResponse
from transformers import pipeline
summarizer = pipeline("summarization")
def summarize_view(request):
text = request.GET.get('text', '')
summary = summarizer(text, max_length=50)
return JsonResponse({'summary': summary})
# streamlit_app.py
import streamlit as st
from transformers import pipeline
classifier = pipeline("sentiment-analysis")
st.title("AI Sentiment Analyzer")
text = st.text_input("Enter your text:")
if text:
result = classifier(text)
st.write(result)
# Run with: streamlit run streamlit_app.py
from telegram.ext import Updater, CommandHandler
from transformers import pipeline
summarizer = pipeline("summarization")
def start(update, context):
update.message.reply_text("Send /summarize & your text")
def summarize(update, context):
text = " ".join(context.args)
summary = summarizer(text, max_length=50)
update.message.reply_text(summary[0]['summary_text'])
updater = Updater("YOUR_BOT_TOKEN", use_context=True)
dp = updater.dispatcher
dp.add_handler(CommandHandler("start", start))
dp.add_handler(CommandHandler("summarize", summarize))
updater.start_polling()
# Flask API (Python backend)
from flask import Flask, request, jsonify
from transformers import pipeline
app = Flask(__name__)
classifier = pipeline("sentiment-analysis")
@app.route('/analyze', methods=['POST'])
def analyze():
text = request.json['text']
result = classifier(text)
return jsonify(result)
# Use this API in mobile app via HTTP request
import face_recognition
import cv2
image = face_recognition.load_image_file("person.jpg")
face_locations = face_recognition.face_locations(image)
print(f"Found {len(face_locations)} face(s).")
import discord
from transformers import pipeline
client = discord.Client()
summarizer = pipeline("summarization")
@client.event
async def on_message(message):
if message.content.startswith('!summarize'):
text = message.content[len('!summarize '):]
summary = summarizer(text, max_length=50)
await message.channel.send(summary[0]['summary_text'])
client.run("YOUR_DISCORD_BOT_TOKEN")
from chatterbot import ChatBot
from chatterbot.trainers import ChatterBotCorpusTrainer
bot = ChatBot("AI Bot")
trainer = ChatterBotCorpusTrainer(bot)
trainer.train("chatterbot.corpus.english")
response = bot.get_response("How are you?")
print(response)
# Sample AI + IoT (Raspberry Pi with temperature sensor)
import Adafruit_DHT
from sklearn.linear_model import LinearRegression
# Sensor setup
sensor = Adafruit_DHT.DHT11
pin = 4
humidity, temperature = Adafruit_DHT.read_retry(sensor, pin)
# Predict temperature trend with dummy data
model = LinearRegression()
model.fit([[0], [1], [2]], [22, 23, 24])
prediction = model.predict([[3]])
print("Predicted temperature:", prediction)
import sqlite3
from transformers import pipeline
classifier = pipeline("sentiment-analysis")
# Connect to DB
conn = sqlite3.connect("feedback.db")
cursor = conn.cursor()
cursor.execute("SELECT comment FROM reviews")
for row in cursor.fetchall():
sentiment = classifier(row[0])
print(f"{row[0]} -> {sentiment}")
conn.close()
import gspread
from oauth2client.service_account import ServiceAccountCredentials
from transformers import pipeline
# Setup
scope = ["https://spreadsheets.google.com/feeds", "https://www.googleapis.com/auth/drive"]
creds = ServiceAccountCredentials.from_json_keyfile_name("creds.json", scope)
client = gspread.authorize(creds)
sheet = client.open("Feedback").sheet1
data = sheet.col_values(1)
classifier = pipeline("sentiment-analysis")
for comment in data[1:]:
sentiment = classifier(comment)
print(comment, "->", sentiment)
# Using scikit-learn to classify emails as spam or not
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
emails = [
"Win a free lottery now",
"Meeting at 10am tomorrow",
"Claim your free prize",
"Project update attached"
]
labels = [1, 0, 1, 0] # 1: spam, 0: not spam
vectorizer = CountVectorizer()
features = vectorizer.fit_transform(emails)
model = MultinomialNB()
model.fit(features, labels)
test_email = ["Free lottery winner"]
test_features = vectorizer.transform(test_email)
prediction = model.predict(test_features)
print("Spam" if prediction[0] == 1 else "Not Spam")
import numpy as np
# Sample user ratings matrix (users x items)
ratings = np.array([
[5, 4, 0, 0],
[4, 0, 0, 2],
[1, 1, 0, 5],
[0, 0, 5, 4],
])
# Simple item-based similarity (cosine)
from sklearn.metrics.pairwise import cosine_similarity
item_similarity = cosine_similarity(ratings.T)
# Recommend items for user 0
user_ratings = ratings[0]
scores = item_similarity.dot(user_ratings)
print("Recommendation scores:", scores)
import tweepy
from transformers import pipeline
# Authenticate to Twitter API
auth = tweepy.OAuth1UserHandler("API_KEY", "API_SECRET", "ACCESS_TOKEN", "ACCESS_TOKEN_SECRET")
api = tweepy.API(auth)
classifier = pipeline("sentiment-analysis")
tweets = api.search_tweets(q="python", count=5)
for tweet in tweets:
result = classifier(tweet.text)
print(tweet.text)
print("Sentiment:", result)
from transformers import BlipProcessor, BlipForConditionalGeneration
from PIL import Image
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
image = Image.open("sample.jpg")
inputs = processor(image, return_tensors="pt")
out = model.generate(**inputs)
caption = processor.decode(out[0], skip_special_tokens=True)
print("Caption:", caption)
from transformers import pipeline
summarizer = pipeline("summarization")
text = """
Artificial intelligence is the simulation of human intelligence processes by machines,
especially computer systems. Applications include expert systems, natural language processing,
speech recognition and machine vision.
"""
summary = summarizer(text, max_length=50, min_length=25, do_sample=False)
print("Summary:", summary[0]['summary_text'])
import pytesseract
from PIL import Image
image = Image.open("document.png")
text = pytesseract.image_to_string(image)
print("Extracted Text:")
print(text)
import speech_recognition as sr
import pyttsx3
recognizer = sr.Recognizer()
engine = pyttsx3.init()
with sr.Microphone() as source:
print("Say something...")
audio = recognizer.listen(source)
try:
text = recognizer.recognize_google(audio)
print("You said:", text)
engine.say("You said " + text)
engine.runAndWait()
except Exception as e:
print("Error:", e)
# Using RPA library and AI sentiment analysis together
import rpa as r
from transformers import pipeline
r.init()
r.url('https://www.example.com/contact')
sentiment = pipeline("sentiment-analysis")
text = r.read('//*[@id="contact-form"]/textarea')
result = sentiment(text)
print("Sentiment:", result)
r.close()
import numpy as np
from sklearn.linear_model import LinearRegression
# Sample stock prices
prices = np.array([100, 102, 101, 105, 110])
days = np.array([1, 2, 3, 4, 5]).reshape(-1, 1)
model = LinearRegression()
model.fit(days, prices)
predict_day = np.array([[6]])
predicted_price = model.predict(predict_day)
print("Predicted price on day 6:", predicted_price[0])
# Anomaly detection using IsolationForest
from sklearn.ensemble import IsolationForest
import numpy as np
# Sample data with an anomaly
data = np.array([[10], [12], [10], [13], [100]])
model = IsolationForest(contamination=0.1)
model.fit(data)
pred = model.predict(data) # -1 means anomaly, 1 means normal
print("Predictions:", pred)
# Output explanation: The 100 is flagged as anomaly (-1)
from transformers import GPT2LMHeadModel, GPT2Tokenizer
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2LMHeadModel.from_pretrained('gpt2')
input_text = "Once upon a time"
inputs = tokenizer.encode(input_text, return_tensors='pt')
outputs = model.generate(inputs, max_length=50, num_return_sequences=1)
generated = tokenizer.decode(outputs[0], skip_special_tokens=True)
print("Generated text:")
print(generated)
from transformers import pipeline
chatbot = pipeline("conversational")
from transformers import Conversation
conv = Conversation("Hello, how are you?")
response = chatbot(conv)
print("Chatbot response:", response.generated_responses[-1])
# Example assumes usage of diffusers library
from diffusers import StableDiffusionPipeline
import torch
model_id = "CompVis/stable-diffusion-v1-4"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
prompt = "A fantasy landscape with castles"
image = pipe(prompt).images[0]
image.save("generated_image.png")
print("Image saved as generated_image.png")
import speech_recognition as sr
r = sr.Recognizer()
with sr.AudioFile('audio.wav') as source:
audio = r.record(source)
text = r.recognize_google(audio)
print("Transcribed text:")
print(text)
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("Salesforce/codegen-350M-mono")
model = AutoModelForCausalLM.from_pretrained("Salesforce/codegen-350M-mono")
input_code = "def add_numbers(a, b):"
inputs = tokenizer(input_code, return_tensors="pt")
outputs = model.generate(**inputs, max_length=50)
generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
print("Generated code:")
print(generated_code)
import face_recognition
image = face_recognition.load_image_file("test.jpg")
face_locations = face_recognition.face_locations(image)
print(f"Found {len(face_locations)} face(s) in the image.")
for i, location in enumerate(face_locations):
print(f"Face {i+1} location: {location}")
import cv2
import torch
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
cap = cv2.VideoCapture(0)
while True:
ret, frame = cap.read()
results = model(frame)
results.render()
cv2.imshow('YOLOv5 Detection', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
from transformers import pipeline
translator = pipeline("translation_en_to_fr")
text = "Hello, how are you?"
translation = translator(text, max_length=40)
print("Translation:", translation[0]['translation_text'])
from transformers import pipeline
# Initialize sentiment-analysis pipeline
sentiment_analyzer = pipeline("sentiment-analysis")
text = "I love using AI tools, they make life easier!"
result = sentiment_analyzer(text)
print("Sentiment analysis result:")
print(result)
# Output: [{'label': 'POSITIVE', 'score': 0.9998}]
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt
# Sample time series data (days and sales)
days = np.arange(1, 11).reshape(-1,1)
sales = np.array([200, 220, 250, 270, 300, 320, 350, 370, 400, 420])
# Train/test split
X_train, X_test, y_train, y_test = train_test_split(days, sales, test_size=0.2, random_state=42)
# Fit linear regression model (simple forecasting)
model = LinearRegression()
model.fit(X_train, y_train)
# Predict future sales for next 3 days
future_days = np.array([11,12,13]).reshape(-1,1)
predictions = model.predict(future_days)
print("Predicted sales for next days:")
for day, pred in zip(future_days.flatten(), predictions):
print(f"Day {day}: {pred:.2f}")
# Plot
plt.scatter(days, sales, color='blue', label='Actual sales')
plt.plot(np.arange(1,14), model.predict(np.arange(1,14).reshape(-1,1)), color='red', label='Forecast')
plt.xlabel('Day')
plt.ylabel('Sales')
plt.legend()
plt.show()